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Abstract —The problem of transient natural convection which occurs in a vertical cylinder opened at both ends, filled with a fluid
saturated porous medium and heated with a periodical lateral heat flux density is outlined. The present study is carried out by the
use of the Darcy flow model, and it assumes local thermal equilibrium between the solid and fluid phases. The wall heat conduction
is taken into account. Numerical simulations provide us with the evolution of flow and temperature fields within the cylinder. The
analysis of flow and thermal field response to any changes in the period of heat pulsation values, the ratio of the wall thermal
diffusivity to the porous medium thermal diffusivity and the thickness of the wall are reported in the course of this study. 0 2000
Editions scientifiques et médicales Elsevier SAS

natural convection / vertical cylindrical enclosure / periodical heat flux density / wall heat conduction / numerical simulation
/ porous medium

Nomenclature q heat flux density . . . .. ....... Wh—2
; 2
o . . q0 reference heat flux density . . . . .. W
Aj interior aspect ratio of the cylindeR; / H o flow rate Ahs1
Ae exterior aspect ratio of the cylindate/ H N radial coordinate
B? Biot .n'umbgr,hH/)\p R cylinderradius . . .. .........
Bii,o modified Biot numberhi o H /Aw Rq  thermal diffusivity ratio.ew/ap
cp specific heat capacity at constant Y time
Q-1 o otime. L
pressure ... ... kK . . )
. . . t dimensionless time
e dimensionless wall thicknesde — Aj ,
. . : T temperature . ... ... .......
Fr dimensionless heat pulsation frequency T dimensionless temperature
i ; 2
8 - acc((;,_lft_erztlon (lju_ert]o gra\tl)lty """ 81 To ambient temperature . . . . . ... ..
R IT(; |;2/(Ray e):g) AUMbET, uy.,u}, axial and transverse velocity
AU components . .. ........... gl
H cylinder height . . o m ur,u; dimensionless axial and transverse
h,ho heat transfer coefficients at the outlet - velocity components
f th linder . .. .......... <K~ . . .
of the cylinde - . Wn r dimensionless transverse coordinate
hij heat transfer coefficient at the inlet , . .
of the cylinder Wn—2.K-1 axial coordinate . . . .........
X bility 2 z dimensionless axial coordinate
permeability . . ... ... ... ...
P/ pressure .. .............. kg—1l.s2 Greek symbols
P dimensionless pressure e )
. P ) ap thermal diffusivity of the porous medium,
Py ambientpressure . . . . ... ... .. kg~-s 1
ap=2Arp/(pCplf « - n-s
B fluid coefficient of volume expansion «’
*Correspondence and reprints. 3 average porosity
Sassi.bennasrallah@enim.rmu.tn @ exchanged heat flux at the cylinder exit
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A thermal conductivity . . . . . ... .. wh—1K-1
y volumetric specific heat ratio,
(peplp/(pep)t
wui  fluid's dynamic viscosity . . . . . . . kgn1.s1
vt fluid's kinematic viscosity . . . . . . s 1
9} dimensionless heat pulsation period
of  fluid'sdensity . ............ kgn—3
Subscripts
c cold
f fluid
h hot
i inlet
0 outlet
p porous
r ratio
ref reference
Ss steady state
w wall

Superscripts

%, dimensionless quantities

1. INTRODUCTION

Natural convection in a open-ended porous medium
filled structures is of theoretical importance in recent
years. It has also many engineering applications mainly
relevant to building insulation, fire protection techniques,

cally the evolution of flow and temperature fields within

a fluid saturated porous medium enclosure heated peri-
odically from one side wall with the opposite side wall
maintained at a constant temperature and the other sur-
faces insulated.

Although most of the physical systems have a finite
wall conductance, only a small number of studies take
into account the interaction between convection in the
fluid filled porous media and heat conduction in the wall.
Bejan and Anderson [8] demonstrated that the insert of
a vertical impermeable partition reduces significantly the
net heat transfer rate through the porous layer. In addi-
tion, Kim and Viskanta [9] showed that the thermal wall
conductance could lead to significant changes in the con-
vective heat transfer coefficient for a viscous fluid in an
enclosure. However, the studies have neglected the inter-
action between convection in the fluid-filled porous cav-
ity and conduction of heat in the bounding wall form-
ing the enclosure by using idealised boundary condi-
tions such as those corresponding to a prescribed heat
flux or temperature. Chang and Lin [10] have examined
the effects of wall heat conduction and anisotropy on
natural convection in a fluid-saturated porous medium
filled in a rectangular cavity. The authors have used the
Darcy flow model and assumed the steady state regime.
To the authors knowledge, the problem of transient nat-
ural convection in a saturated porous vertical cylindri-
cal enclosure opened at both ends and heated with a

heat storage beds, hazardous thermochemical spreading,Periodical lateral heat flux density seems not to have
Cooling of electronic ComponentS, and so on. One of been studied elsewhere. This has motivated the pl’esent

the principal characteristics of buoyancy induced flows
in open-ended systems is their basic geometry which,

among other aspects, reveals the interactions and the

influence of the inner (inside the medium) and outer
(the open region) flow and thermal fields. A theoretical

study.

The present paper deals with unsteady natural con-
vection which occurs in a vertical cylindrical enclosure
opened at both ends, filled with a fluid saturated porous

analysis of open-ended structures problems poses the medium and heated with a periodic lateral heat flux den-

inherent challenge of specifying boundary conditions at
the open end (Vafai and Ettefagh [1, 2] and Desai and
Vafai [3]).

Transient heat transfer in a fluid saturated porous
enclosure caused by a step change in vertical wall
temperature was treated by Poulikakos and Bejan [4] with
the Darcy law. The analysis was extended later by the
same authors [5] for higher Rayleigh number, using the
Darcy—Forchheimer model.

The problem of natural convection within a fluid rec-
tangular enclosure subjected to oscillatory temperature at
one vertical wall has been studied by Yang et al. [6]. An-
tohe and Lage [7] investigated theoretically and numeri-

sity. The present study is carried out by the use of the
Darcy law and it takes into account heat conduction in
the wall. A one-temperature model which supposed the
validity of the thermal equilibrium assumption is used for
energy transport. The set of equations is resolved numer-
ically by the standard finite volume method as given by
Patankar [11]. The numerical simulations provide us with
the time—space evolution of flow and temperature fields
within the cylinder as well as the analysis of flow and
thermal fields response to any changes in the frequency
of heat pulsation values, the ratio of the thermal wall dif-
fusivity to the thermal porous medium diffusivity and the
wall thickness.
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2. FORMULATION OF THE PROBLEM e Darcy law

. . . oP oP
A schematic of the physical model and coordinate sys- Ur=-—7- u,=——+RaT 3)
r

tem is given irfigure 1 The vertical cylinder is opened at 9z

both ends, filled with a fluid saturated porous medium Equations (2) and (3) together yield the so-calledis-
and subjected to intermittent heating from the lateral son’s equatiohas

wall. The porous medium is considered to be homoge-

neous, isotropic, and at local thermal equilibrium. The 10/ oP 0 [OP oT
thermophysical properties of the solid matrix and the - 5(’ 5) + a_z(a_z> =Ra oz
fluid are assumed to be constant except in the body force

term of the Darcy law invoking the Boussinesq's ap- e Energy conservation in the porous medium
proximation. Although the porosity varies near the wall

(Vafai [12]), the present study assumes constant porosity % a_T + <Mr a_T +u, a_T)
throughout the cylinder. ot or 0z
The nondimensionalization of the governing equa- _[ra . or _'_3 oT (4a)
tions is carried out on the basis of the following defini- T lror\U or 0z \ 9z
tions: where y is the volumetric specific heat ratigy =
r',2) T' - To (ocplp/(pep)t.
(r,2)= , = .
H qoH /A e Energy conservation in the wall
P — Py (up, ul)
——— =Ry{=—r— —(—=— 4b
et/ “/H o~ roar\"or ) T e\ e (40)
— _41
= H2/ap’ 0= q0 where the subscript w means a wall quatity aqds the

ratio of the wall thermal diffusivity to that of the porous
The resulting continuity, Darcy law and energy equations medium,Rq = ow/ap.
in terms of dimensionless variables are as follows (Ben
Nasrallah et al. [13]):
« Continuity 2.1. Initial and boundary hydrodynamic
conditions
190(u,) Ou,
- +
r  or 0z

=0 (2)
P(r,z,00=0 atr<0O (5)

' The boundary condition on the pressure at the inlet of the
cylinder is written as (Bernoulli’s law):

P'(r',0,1") = Po— % poU"?

U’ being the velocity at the entrance of the cylinder and
Pp the atmospheric motorise pressure. Dalbert et al. [14]
have studied the influence of the teFFr%poU’z on fluid

flow by natural convection of a Newtonian fluid in a
vertical channel heated by a constant heat flux. They
have shown that this correction of the motorise pressure
enhanced results only for considerable heating rates. In
our case, we consider a fluid flow through a porous
medium where the velocity remains very weak. Then, we
| can neglect the effect of the term%,oU’z:

Figure 1. Geometry and coordinate system. Pr0,t)=P@r 1,t)=0 forO<r < A; (6)
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The bounding wall’ = R; is supposed impermeable Qt
and as a result the boundary hydrodynamic condition P
required at this level is of the type Q 121 —h
Nt
oP’
; =0 )
or' |y—g 10
I
which follows directly from the Darcy law by writing !
M“r’:Ri - 0 Q sl l L—
¥,
P P .
or or | .
t=t t

ien Figure 2. Periodical heat flux density.
2.2. Initial and boundary thermal g Y

ndition - .
conditions At the lateral wall, a periodical heat flux density was

applied {igure 2:

T(r,z,00=Tu(r.z,00=0 atr<0  (9) M 4oz = 00) (12a)
or o

The thermal boundary condition at the inlet of the
cylinder can be written a8’ = Tp. Indeed, in a cheminey
flow, a thermal boundary layer will be developed in
the cylinder. The thickness of this thermal boundary T(Ai,z,1) = Tw(Ai, 2,1) (12b)
layer is negligible at the entrance region of the medium.
Thereby, the temperature at this region remains equal to ¢ the cylinder exit, the existent flow upper the porous
the temperature of the surrounding, in occurrefice surface is very complicated. On one hand, the upper face

We have also undertaken a sensitivity study to the releases a natural convection fluid flow similar to that
thermal boundary condition on the temperature, by taking 0observed over a heated horizontal flat plate. On the other

The temperature continuity = A; is introduced by the
following equation:

a thermal boundary condition of the type hand, the outlet fluid flow disturbs the effect of the heated
horizontal flat plate and, under certain conditions, it can

oT , allow fluid to re-enter the cylinder as a recirculatory flow.
M|, T h(T" — To) To avoid this problem, we are expected to make larger the

@=0 calculating domain in order to take into account the fluid

This study has shown that the temperature at the entrance flow and heat transfer near the outlet face, which will
is insensitive to the choice of the heat transfer coefficient complicate the study. To avoid this problem, we introduce
i and it remains equal to the temperature of the surround- 1N the case of an upward flow.{ > 0), a heat transfer

ing. So, at the inlet we have: coefficient as (Slimi et al. [15])
or : ,
T(r,0,1)=0 forO<r <A (10a) —5, " LN=BITC10) ifu>0
for0<r < Aj (13a)

At the bottom of the heated wall, the thermal boundary

o In the case of a downward flow:{ < 0), the boundary
condition is expressed as

condition at the exit of the cylinder is

oT, . _ i .
a_W(r’ 0,7) =BiiTw(r,0,1) for Aj <r < Ae (10b) Tr,1,t)=0 ifu, <0 forO<r < Aj (13b)
z
At the superior face of the wall, the boundary condition
Owing to the revolution symmetry at= 0, we have: is expressed as follows:

oT :
a—T(o =0 (11) —57 1.0 =BioTw(r. 1.1) for Aj <r < Ae (13c)
or T
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3. NUMERICAL PROCEDURE

The governing equations are solved by the standard
finite volume method (Patankar [11]), which is based
on the solution of difference equations obtained by inte-
grating the differential equations for continuity, momen-
tum and energy over control volume enclosing the nodal
points. The advantage of this method is to insure the flux
conservation.

In the present study, we have used a uniform grid in
the porous medium and a fine and uniform grid in the
wall (figure 3.

In order to ensure the stability of the numerical model,
the convective terms are discretized using the upwind

scheme. A fully implicit scheme is used for the temporal
terms.

By first assuming a temperature distribution within the
entire medium, the Poisson’s equation is solved by line-
by-line iteration giving the pressure distribution in the

cylinder. Then the set- and z-velocity are determined
and energy equations for the porous medium and the wall
are solved also by line-by-line iteration. After a sweep of
the solution domain is completed, numerical convergence
is examined locally following the criterion

i+l i
n,m n,m

¢;1,m

whereg is replaced byP andT at every(m, n) location
of the discretized domainandi + 1 are two consecutive
iterations at the same time ande is a given tolerance.

To examine the validity of the numerical scheme,
our numerical results, for the velocity and temperature
distributions, were compared with the numerical results
obtained by Ben Nasrallah et al. [13] by making the
necessary changes. They all agree at least up to three
decimal places. The comparison is not shown here for
the sake of brevity.

MAX

<e (14)

To check again the accuracy of our results comparison
is also made with previous published results related to

AN . I OLN) steady free convection in a vertical annulus filled with
(IR el A A N IO A A B A B E a saturated porous medium and whose vertical walls
150 B o o i O are at constant temperatures, the horizontal walls being
o e i A A AN B B B N A B insulated (Hickox and Gartling [16] and Prasad and
o o T o B o Kulacki [17]).

A i i o i Ak s B W Tables landIl show good agreement between our nu-

ol i el Aol v ot ot S A S merical results and those obtained in previous published

R bl - L Az results.

i i i o '5’*'7"{"{"‘: In tables I and Il, A and « are, respectively, the

B “‘““ T "““" [ aspect ratioA = H/(re — ri), and the radius ratio of the

o o i o o o cylindrical annulusx = re/ri, andRa s the Rayleigh

T o S B number defined as in Hickox and Gartling [16] and

ST T o o Prasad and Kulacki [17].

I A Y W A B I B B L N B Our numerical results for Nusselt number are also

IS A Y N O A compared with the experimental results of Prasad [18]
110 ] SO A I A I A A A A S A AR ¥ § ) and the numerical ones of David et al. [18i§le I11).

ar Here, intable lll, & = d/(re — ri) is the ratio of the
Figure 3. Discretized domain. solid diameter and the annulus widtBy; is the fluid
TABLE |

Comparison of present values of average Nusselt number with the values obtained in previous published results.

A=2 A=4 A=6 A=8
K 2 3 5 15 2 3 1.33 1.67 2.33 1.25 15 2
Hickox and Gartling [16] 4.190 4.741 5590 2.879 3.216 3.750 2.277 2506 2.886 1951 2117 2.409
Prasad and Kulacki [17] 4048 4738 5716 2751 3123 3.692 2172 2412 2806 1862 2.033 2.327
Present results 4012 4535 5419 2.888 3292 3.800 2379 2615 2982 2063 2234 2520
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TABLE I
Comparison of present values of average Nusselt number with the values obtained in previous published results.
K=2 k=5 k=10
Ra 75 50 50 50 120 120 80 80 135 135 90 90
A 1 1 10 20 2.5 6.25 25 12.5 2222 5555 2222 11.11
Prasad and Kulacki [17] 3.59 2.77 172 157 579 415 4.83 2.99 8.17 6.05 6.88 4.54
Present results 360 289 186 1.68 545 411 4.60 3.03 7.44 5.83 6.39 4.45
TABLE Il

Comparison of present values of average Nusselt number with experimental and numerical
ones for k =5.338 A =1.

d (mm) B Pr¢ Ry Prasad [18] David et al. [19] Present results
3 0.0242 5.46 6.500° 9.058 8.984 8.971
4.51 1.9010° 21.15 16.12 16.07
4.11 3.0310° 26.77 21.00 20.95
6 0.0484 6.17 1.420° 10.44 9.169 9.17
5.72 3.611C° 19.86 15.71 15.72
4.98 1.1210° 39.53 29.76 29.78
4.37 2.3810° 58.11 44.84 44.86
22.25 0.1796 6.01 46707 23.46 25.98 25.96
5.86 1.461C° 37.10 56.48 56.44
5.65 2.7510° 51.06 66.84 66.80
5.46 4.3210° 59.56 79.48 79.45
Prandtl numberPri = vi/af, and Rg is the Rayleigh In a dimensionless formg,; and ®* are written as
number of the fluid, follows:
3 L2 [N
re —ri)SAT =— u.rdr 16
Ra:gﬁ(e i) v A,Z/O z (16)
o Vf
o . 1| apf A A
The examination ofable Il shows reasonable varia- Q= — / u,Trdr+ Bi/ Trdr
tions between our numerical results and the experimental Ai | 2w \Jo 0
ones especially at lower valuesdfandRg. Ao
Aj
4. RESULTS AND DISCUSSION If the heat exchanged by wall end at the cylinder outlet

is neglected then the heat flux exchanged at the cylinder

To help understand the thermal convective effect of €Xit will be expressed as
wall c_o_nductance and of pulsating heat, four physs_ical 1 A A
quantities are chosen: the temperature, pressure, dimen- g+ _ = P (/ W, Trdr+ Bi/ Tr dr) (17b)
sionless flow ratey,; and heat flux®* exchanged at the Ai aw \ Jo 0
cylinder exit.g,; and @* are obtained with integration
over the whole section at the cylinder exit and rended di- These two quantities have been chosen for two principal

mensionless by employing the following scales: reasons. First, because their representations may help the
conception of several industrial applications especially

ﬂRizap where it is necessary to have an idea on the amount of

Guref =~ Pref = 2 RiH qo (15) heat that can be recaptured at the exit of the porous bed
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Figure 4. Time-space evolution of pressure field for (a) r =0.03, (b) t =0.05and (c) t = 1.
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and/or the flow rate that can leave this region. Second, thermal wall diffusivity to the thermal porous medium

because their representations may be useful to distinguish
easily the effect of different parameters.

The porous medium enclosed in the vertical cylinder
is saturated initially with motionless and isothermal fluid.
The first phase of the thermal process refers to the heating
of the enclosed quiescent fluid until a steady convection
regime is attained. During this phase, a constant dimen-
sionless heat fluQ = 1 is imposed at the lateral wall. At
t = tss (Which corresponds to the moment when the sys-
tem reaches steady state= ., the system undergoes a
second phase during which the input heat fluxes pulsates
in time around its reference value.

Here, the heat pulsation half-amplitude is kept at 20 %
of the reference value. Equal heating and cooling periods
are assumedn = £2¢ = £2, so the nondimensional heat
pulsation frequency iBr = 1/(22).

4.1. Physical phenomena description
for a constant prescribed heat flux
(first phase)

In this section, all the calculations have been perform-
ed for Biot numbers representing the external change,
Bi = 2-10%, Bij = 10?, Bi, = 2-10%, a heat capacity ratio
y = 1.546, a modified Rayleigh numbBRa* = 2-10%, an
interior aspect ratio of the cylindet; = 1, a ratio of the

180 -

u,
il
150 - 3’L
5’9
120 - —— 2=0134 |
—— 220300 i+
—A— 720467 /{//I f
90 1 —o— =063 'f,‘l
—m— 7=0.800 ,ﬁy//
A

1.2

Figure 5. Axial velocity versus radial distance during the first
phase of the thermal process.

diffusivity Rq = 0.1 and for a constant dimensionless
heat flux densityQ = 1. We have chosen to takea=
2.10° and A; = 1 so as to have a flow with top aspiration

from the upper porous surface of the cylinder. It has been

shown that this type of flow is found for high aspect ratio
A and/or great values of the modified Rayleigh number
(Ben Nasrallah et al. [13]). It has been demonstrated in
a previous work (Slimi et al. [15]) that at this level of
modified Rayleigh number (which corresponds to a fluid
Grashof numbeGr; = 2.10° in [15]), the Darcy flow
model remains valid if the Darcy numb&a = k/H?

is lower than 10%. However, it has been shown that for
Ra* = 2.10%, the longitudinal flow is dominant.

Figure 4 depicts the time—space variations of pres-
sure within the cylinder. As can be seen, the pressure de-
creases from the inlet, attains a minimum value and in-
creases, reaches a maximum and decreases to attain the
ambient pressure.

The pressure decreases at first with time and, for
enough period of time, it tends to be independent of time.

Figure 5shows thez-component of the velocity field
versus radial distance, at different axial locations, during
the first phase of the thermal process. As illustrated by
this figure, the axial velocity is important in a region
close to the heated wall and decreases with the radial
distancer.

Figure 6 indicates the time—space variations of the
temperature within the cylinder. The isotherms have the
same profile found in the case of a heated flat plate in a
semi-infinite medium and are confined in the region near
the heated wall.

At the cylinder exit, the vertical temperature gradients
are high because of the heat loss to surrounding. How-
ever, the influence region of these thermal gradients is
very scanty.

Figure 7(a)gives, in the steady state, the temperature
profile in the entire medium (wal- porous medium)
versus radial distance Due to the applied lateral heat
flux density, the temperature is found to be important in
a region close to the heated wall, and it decreases with a
decrease of. As shown infigure 7(b) the temperature
in the wall is found to be increased from the inlet of
the cylinder attains a maximum and decreases to reach
a lower value at the exit due to the heat loss with the
surrounding.
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2.107, a wall thicknesse = 0.02, a modified Rayleigh I\ A
numberRa* = 2-10° and for different thermal diffusivity 1 o Rd=00I f/‘/

ratio Rq ranging from 0.01 to 1.
The time-evolution of thermal and pressure fields are

presented ifigures 8-11for different values oy versus "o? \\ ,f( /
axial distance. o ] w /

For constant wall heat flux density, it is seen that, ] Va
in the transient period, the temperature in the porous a0l ™ .
medium increases with increasimty (figure 8. In the Teo oa os s
steady state regiméigure 8(c), the thermal field is in- Axial distance, Z

sensitive to any change in the valueRy.

In figure 9 we have represented the time-variations
of the temperature within the cylinder for a periodical 10
heat flux with a frequencyr = 25 and for different

AIII[LJ
:

values ofRy. As could be expected, any increase in the (©)
value of Rq yields an increase in the amplitude of time- 00 -3 —e—  Rd=00I o
variations of temperature. It can also be concluded from \ —s— R0l /

this figure that the maximum of temperature is reached as
rapidly asRy is higher.

We have represented also the time—space variations of
pressure within the cylinder for different values 8§ ]
(figure 10. It is seen that any increase in the valueRgf 20
is accompanied, in the transient perididres 10(ab)),

s
Liiuiuas
o
g
\\

NN EERETE FUNTRRe!
-
\

by a decrease in the pressure vallggure 10(c)shows "\N,v

that, in the steady state regime, the pressure is insensitive 30 T

to any change in the value &f. 00 04 08 12
The effect ofRy on the pressure field, in the case of a Axial distance, Z,

periodical heat flux, has also been studiégiuie 11). As . ,

. . . Figure 10. Pressure versus z for r = 0.6 and for different
gxpected, th? amp“.tUde of time-variations of the p.ressure thermal diffusivity ratios and at (a) r = 0.03, (b) r = 0.05 and
increases with the increase &f. As the thermal field, (@r=1
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Figure 13. ¢, and @ versus time for a periodical heat flux and
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the maximum of the time-variations of the pressure field
is found to be attained as rapidly &g is higher.

The time-variations of flow rate and heat flux ex-
changed at the exit of the cylinder are plottefigures 12
and13.

In the case of a constant wall heat flux density
(figures 12(a b)) the steady state regime is reached as
rapidly as Rq is important. This is evident because a
higher value ofRy corresponds, for a fixed value of the
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thermal diffusivity of the porous medium, to a higher wall
diffusivity and, consequently, to a less wall inertia and/or

a higher wall conductivity.

In the case of a periodical wall heat flux density, we
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Figure 15. Pressure versus time for Rgy=1, z =0.58, r = 0.78,
Fr = 25 and (a) for different Fr values and (b) for different r

values.

As can be seen froffigures 13(ab), the amplitudes of

time-variation of flow rate ratio and of the heat flux ratio

increase withRyq. The maximum values of these plots are

have represented a flow rate ratio and a heat flux ratio as found to be reached as rapidly &g is higher.

follows:

" P*(t=ts9)

vr

T gi(t=ts9’

of a periodical wall heat flux density.
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4.2.2. Effect of the pulsating heat
frequency

To study the effect of the pulsating heat flux frequency,
We have considered these two parameters in order to numerical calculations were made with a wall thickness
distinguish easily the effect of the parameters in the case ¢ = 0.02, a Rayleigh numbeRa* = 2.10%, an interior
aspect raticdj = 1, Biot numbersi = 2103, Bi; = 10?,
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Figure 16. Time-variations of (a) ¢;, and (b) @ for Ry =0.1and Figure 17. Time-variations of (a) ¢ and (b) &; for Rq = 0.1 and
Fr=16. Fr=33333
Bio = 2:10%, a diffusivity ratio Ry = 1 and for different ~ As can be seen fronfigure 14 the amplitude of
values of the frequendr. time-variations of the temperature ratio is found to

be increased with a decrease in the frequency value.
Figure 14(b) indicates, for a fixed value of the heat
pulsation frequency, a decrease in the amplitude of the
temperature ratio far from the heated wall.

T(t > ts9 In figure 15(a) we have been concerned by the time-
T T =1e9) variations of the pressure field within the porous medium

To help understand the effect of the applied heat flux
frequency on thermal field, we have chosen the following
variable named temperature ratio defined as

r
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= ,
with the heat pulsation frequency. It is found that an *;g
increase in the value dfr leads to a decrease in the 001 1
amplitude of time-variations of the pressure field within i/
the medium.Figure 15(b)shows that the amplitude of 000
. .. . . : 7 T ’ i T f ! E i
time-variations of the pressure field is lessened far from 000 020 040 060 080 100

the heated wall.

AS.ShOWH infigures 16—18_' the amplitUde_ of time- Figure 19. Temperature versus z for Ry=1, r = A; and at
variations of the flow rate ratig;;,, and the ratio of heat (@) t=0.025(b) t =0.1and (c) r = 0.5.

Axial distance
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Figure 21. Time-variations of temperature for r = 0.79, z =
0.57, Fr =25, R4 =1 and (a) a constant heat flux and (b) a
periodical heat flux.

flux exchanged at the cylinder exdt* is reduced as the
frequency is increased. We have also demonstrated that
for all modified Rayleigh number values ranging from
3-107 to 2:103, the system responds to an increase in heat
pulsating frequency in a similar fashion. These results,
not shown here for the sake of brevity, indicate also that
the system is not susceptible to resonance phenomena
and an increase in the frequency results in a monotonic
decrease in the amplitude @f, and®;".

4.2.3. Effect of the wall thickness

To examine the effect of the wall thickness the
numerical solutions were obtained fer= 0.02 to 0.12,
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Figure 23. Time-variations of ¢; for (a) a constant heat flux

and (b) a periodical heat flux, for Ry =1 and for different wall
thickness.

for Ra* =2.10°, Aj =1, r = 0.8, z = 0.58, Fr = 25,

Rq = 1. The two different cases (a constant heat flux at

the wall and a periodical heat flux at the wall) are also flux loss with the surrounding. Far from the heated wall

considered in this section. (figure 20, the thermal behaviour is identical, in the
In the case of constant wall heat flux, the temperature Unstéady regime, to that corresponding-te- 1. There

is found to be increased at first with a decrease in IS & difference only in the steady state regime when the

the wall thickness values. In the steady state regime, (€mperature far from the heated wall, seems not to be

the temperature at the wall decreases at the inlet and S€nsitive to any change of the wall thickness.

the outlet regions of the medium as the wall thickness Figures 21(a)and 22(a) show that in the case of

is increased figure 19. This is obvious because the constant wall heat flux, the steady state regime for

increase of the wall thickness will lead, at both edges pressure and temperature is reached as rapidly as the wall

of the cylindrical enclosure, to an increase in the heat is thin.
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Figure 24. Effect of wall thickness on time-evolution of @* for Ry =1 in the case of (a, b) a constant heat flux and (c, d) a periodical

heat flux.

Figures 21(b)and22(b) show that the amplitudes of
time-variations of the temperature and pressure increase will result in a decrease in the flow rate leaving the

as the wall thickness decreases. This is evident because aupper porous surface, and this result occurs in both cases

thin wall exerts less resistance on heat transfer and then (constant and periodical heat flux density). As expected,
the augmentation of the wall thickness will lead to an

increase of the exchanged heat flux at the cylinder exit

the heat flux fluctuations will be easily transmitted to the

interior of the medium.

As indicated byfigure 23 considering a thick wall
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(figures 24(ac)). If the heat exchange between the heated
wall and the surrounding at the exit is not taken into
account, an increase of wall thickness values will lead
to a decrease in the values®f (figures 24(bd)).

5. CONCLUSION

The problem of unsteady natural convection which
occurs in a vertical cylindrical enclosure opened at both
ends, filled with a fluid saturated porous medium, heated
with a periodical lateral heat flux density, was the focus
of the present investigation. The wall heat conduction is
taken into account.

The main results obtained from the numerical solu-
tions can be summarised as follows:

(1) The amplitude of time-variations of pressure and
temperature increase as the ratio of thermal diffusivity
increases and as the frequency and the wall thickness
decrease.

(2) The amplitude of time-variations of the flow rate
and the heat flux exchanged at the exit increase when the
frequency and the thermal diffusivity ratio decrease.

(3) An increase of the wall thickness provokes an
increase in the amplitude of time-variations of the ex-
changed heat flux and a decrease of the time-variations
of the flow rate leaving the upper porous surface of the
medium.
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